BasicTools.FE.MaterialHelp module

BasicTools.FE.MaterialHelp.CheckIntegrity()[source]
BasicTools.FE.MaterialHelp.HookeIso(E, nu, dim=3, planeStress=True)[source]

Compute and return the Hooke operator for an isotropic material (OLD INTERFACE)

E : (scalar) Young modulus nu : (scalar) Poisson coefficient dim : [1|2|3] dimensionality planeStress : (bool) if in 2D plane Stress displacement is assumed

class BasicTools.FE.MaterialHelp.HookeLaw(opt=None)[source]

Bases: object

Class to compute the Hooke using any 2 independent parameters ()

Possible parameters are:

“lambda”:Premier coefficient de Lamé (?) “G” : Module de cisaillement (G) “E” : Module de Young (E) “K”, : Module d’élasticité isostatique (K) “K” “mu”: Module d’élasticité isostatique (K) (mu) deuxiemme coeff de Lamé “nu” : Coefficient de Poisson (?) “M” : Module d’onde de compression (M, P-wave modulus)

Get(name)[source]

Function to retrieve a specific constante based on the provided constant

HookeIso(dim=3, planeStress=True, axisymetric=False)[source]

Return the isotropic Hooke operator for dimensionality dim in the 2D case plane stress (defautl) or plane strain case are available

Read(opt, eraseData=True)[source]

Reader function to get the information form the opt (dict like object) this function will erase all the previous data. change the eraseData to False to set the parameters one by one.

BasicTools.FE.MaterialHelp.LaplaceOrtho(k1, k2=None, k3=None, dim=3)[source]

Compute and return the Laplace operator for an anisotropic material

k1,k2,k3 : (scalar) diffusion coefficient dim : [2|3] dimensionality

if k2,k3 is None the k1 is used